4.4 Indeterminate Forms and L' Hospitâl's Rule

In this section we will discuss how to take the limit of functions that previously seemed to be impossible to compute.

If we have a limit of the form: $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ where both $\mathrm{f}(\mathrm{x}) \rightarrow \mathbf{0}$ and $\mathrm{g}(\mathrm{x}) \rightarrow 0$ as $\mathrm{x} \rightarrow \mathrm{a}$, then this limit may or may not exist and is called an indeterminate form of type $\frac{\mathbf{0}}{\mathbf{0}}$.

In addition, if we have a limit of the form: $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ where both $\mathrm{f}(\mathrm{x}) \rightarrow \pm \infty$ and $\mathbf{g}(\mathrm{x}) \rightarrow \pm \infty$, then the limit may or may not exist and called an indeterminate form of type $\frac{\infty}{\infty}$.

To help us with these problems, we introduce L' Hospitâl's Rule (pronounced lō-pē-tall)

L' Hospitâl's Rule: Suppose \boldsymbol{f} and \boldsymbol{g} are differentiable and $\boldsymbol{g}^{\prime}(x) \neq 0$ on an open interval I that contains \boldsymbol{a} (except possibly at a). Suppose that

$$
\begin{aligned}
& \lim _{x \rightarrow a} f(x)=\mathbf{0} \text { and } \lim _{x \rightarrow a} \boldsymbol{g}(\boldsymbol{x})=\mathbf{0} \text { or } \\
& \lim _{x \rightarrow a} f(x)= \pm \infty \text { and } \lim _{x \rightarrow a} \boldsymbol{g}(\boldsymbol{x})= \pm \infty
\end{aligned}
$$

(In other words we have an indeterminate for of type $\frac{0}{0}$ or $\frac{\infty}{\infty}$) Then,

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

(provided the limit on the right side of the equation exists or is $\pm \infty$.)
Note 1: L'Hospitâl's Rule says that the limit of a quotient of functions is equal to the limit of the quotient of their derivatives, provided the given conditions are satisfied.
Note 2: L'Hospitall's Rule is also valid for one-sided limits and for limits at infinity for negative infinity; that is $x \rightarrow a^{+}, x \rightarrow a^{-}, x \rightarrow \infty$, or $x \rightarrow-\infty$.

Example: Using L'Hospitâl's Rule: Evaluate the following limit.
$\lim _{x \rightarrow 0} \frac{\sqrt{9+3 x}-3}{x}$ Substituting $\mathbf{x}=\mathbf{0}$ into this function produces the indeterminate form $\frac{0}{0}$.
Let $f(x)=\sqrt{9+3 x}-3$ and $g(x)=x$
then $f^{\prime}(x)=\frac{1}{2}(9-3 x)^{-\frac{1}{2}} \cdot 3=\frac{3}{2 \sqrt{9-3 x}}$ and $g^{\prime}(x)=1$
Applying L'Hospitâl's Rule, we have: (The notation for applying L'Hospitall's Rule is [H])
$\lim _{x \rightarrow 0} \frac{\sqrt{9+3 x}-3}{x}=\lim _{x \rightarrow 0} \frac{\frac{3}{2 \sqrt{9-3 x}}}{1}=\frac{1}{2}$.
L'Hospital's Rule requires evaluating the $\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$. It may be that this second limit is another indeterminate form to which L'Hospitall's Rule may be applied again.

Example: Evaluate the following limit:
$\lim _{x \rightarrow 0} \frac{e^{x}-x-1}{x^{2}}$ by substitution we get $\frac{e^{0}-0-1}{0^{2}}=\frac{0}{0}[\mathrm{H}] \rightarrow \lim _{x \rightarrow 0} \frac{e^{x}-1}{2 x}$ by substitution we get $\frac{e^{0}-1}{2(0)}=\frac{0}{0}[H] \rightarrow$ $\lim _{x \rightarrow 0} \frac{e^{x}}{2}$ by substitution we get $\frac{e^{0}}{2}=\frac{1}{2} \therefore \lim _{x \rightarrow 0} \frac{e^{x}-x-1}{x^{2}}=\frac{1}{2}$.

Example: Evaluate the following limit:
$\lim _{x \rightarrow \frac{\pi^{-}}{2}} \frac{1+\tan x}{\sec x}$ by substitution we get $\frac{1+\infty}{\infty}=\frac{\infty}{\infty}[H] \rightarrow \frac{\sec ^{2} x}{\sec (x) \tan (x)}($ simplify $)=\frac{\sec (x)}{\tan (x)}=\frac{\frac{1}{\cos (x)}}{\frac{\sin (x)}{\cos (x)}}=\frac{1}{\sin (x)}$
$\lim _{x \rightarrow \frac{\pi^{-}}{2}} \frac{1}{\sin (x)}=1 \quad \therefore \quad \lim _{x \rightarrow \frac{\pi^{-}}{2}} \frac{1+\tan x}{\sec x}=1$
Before using L'Hospitâl's Rule make sure to check for indeterminate cases. L'Hospital's Rule will not work unless we get the indeterminate form of $\frac{0}{0}$ or $\frac{\infty}{\infty}$.

Indeterminate Products:

If $\lim _{x \rightarrow a} f(x)=0$ and $\lim _{x \rightarrow a} g(x)=\infty($ or $-\infty)$, then it isn't clear what the value of $\lim _{x \rightarrow a}[f(x) \cdot g(x)]$, if any, will be. There is a struggle between f and g as to which one's limit will "win" or take over. If f wins then the limit will be 0 , if \boldsymbol{g} wins then the limit will be ∞ (or $-\infty$). Or there may be a compromise where the answer is a finite nonzero number. This kind of limit is called an indeterminate form of $0 \cdot \infty$. We can deal with it by writing the product as a quotient: $f \cdot g=\frac{f}{\frac{1}{g}}$ or $\frac{g}{\frac{1}{f}}$. This converts the given limit into an indeterminate form of type $\frac{0}{0}$ or $\frac{\infty}{\infty}$ which is necessary to use L'Hospitâl's Rule.

Example: Evaluate $\lim _{x \rightarrow \infty} x^{2} \sin \left(\frac{1}{4 x^{2}}\right) \lim _{x \rightarrow \infty} x^{2} \sin \left(\frac{1}{4 x^{2}}\right)$ by substitution we get the indeterminate product form of $\infty \cdot 0$. If we rewrite this by dividing by the reciprocal of x^{2} we will get the indeterminate form of $\frac{0}{0}$. $\lim _{x \rightarrow \infty} \frac{\sin \left(\frac{1}{4 x^{2}}\right)}{\frac{1}{x^{2}}}=\frac{0}{0}[\mathrm{H}] \rightarrow \lim _{x \rightarrow \infty} \frac{\cos \left(\frac{1}{4 x^{2}}\right) \cdot \frac{\cdot}{4}\left(-2 x^{-3}\right)}{-2 x^{-3}}($ simplify $)=\lim _{x \rightarrow \infty} \frac{1}{4} \cdot \cos \left(\frac{1}{4 x^{2}}\right)=$ $\frac{1}{4} \lim _{x \rightarrow \infty} \cos \left(\frac{1}{4 x^{2}}\right)$ as $x \rightarrow \infty \frac{1}{4 x^{2}} \rightarrow 0=\frac{1}{4} \cos (0)=\frac{1}{4} \cdot 1=\frac{1}{4} \quad \therefore \lim _{x \rightarrow \infty} x^{2} \sin \left(\frac{1}{4 x^{2}}\right)=\frac{1}{4}$

Indeterminate Differences:

If $\lim _{x \rightarrow a} f(x)= \pm \infty$ and $\lim _{x \rightarrow a} g(x)= \pm \infty$, then the limit $\lim _{x \rightarrow a}[f(x)-g(x)]$ is in the indeterminate form of type $\infty-\infty$. Again we have to manipulate the problem into a quotient, (by using a common denominator, or rationalizing, or factoring out a common factor, etc...) so that we have the indeterminate form of type $\frac{0}{0}$ or $\frac{\infty}{\infty}$.

Example: Evaluate $\lim _{x \rightarrow \infty} x-\sqrt{x^{2}-3 x}$ We can see that as \mathbf{x} approaches infinity, both terms, x and $\sqrt{x^{2}-3 x}$ approach infinity. Therefore, this problem has the indeterminate difference form of $\infty-\infty$. Using lots of algebra manipulation we can rewrite. We can factor an \boldsymbol{x}^{2} out inside the square root.
$\lim _{x \rightarrow \infty} x-\sqrt{x^{2}-3 x}=\lim _{x \rightarrow \infty}\left(x-\sqrt{x^{2}\left(1-\frac{3}{x}\right)}\right)=\lim _{x \rightarrow \infty}\left(x-x \sqrt{1-\frac{3}{x}}\right)=\lim _{x \rightarrow \infty} x\left(1-\sqrt{1-\frac{3}{x}}\right)=$
$\lim _{x \rightarrow \infty}\left(\frac{1-\sqrt{1-\frac{3}{x}}}{\frac{1}{x}}\right)=\frac{0}{0}[\mathrm{H}] \rightarrow$ Let $\frac{1}{x}=t$ and replace limit as $\mathbf{x} \rightarrow \infty$ with the limit as $\boldsymbol{t} \rightarrow \mathbf{0}^{+}$
$\lim _{t \rightarrow 0^{+}} \frac{(1-\sqrt{1-3 t})}{t}[\mathrm{H}] \rightarrow \lim _{t \rightarrow 0^{+}} \frac{\frac{3}{2 \sqrt{1-3 t}}}{1}=\frac{3}{2} \quad \therefore \lim _{x \rightarrow \infty} x-\sqrt{x^{2}-3 x}=\frac{3}{2}$
Example: Evaluate $\lim _{x \rightarrow \mathbf{0}^{+}} \boldsymbol{\operatorname { c o t }}(x)-\frac{1}{x}$ As $x \rightarrow 0^{+}$, both $\cot (x)$ and $\frac{1}{x}$ approach ∞, therefore this problem has the indeterminate form $\infty-\infty$. To rewrite this problem write $\cot (x)$ as $\frac{\cos (x)}{\sin (x)}$

So $\lim _{x \rightarrow 0^{+}} \cot (x)-\frac{1}{x}=\lim _{x \rightarrow 0^{+}} \frac{\cos (x)}{\sin (x)}-\frac{1}{x}$ (find a common denominator $\ldots x \cdot \sin (x)$)

$$
\begin{aligned}
& =\lim _{x \rightarrow 0^{+}} \frac{x \cos (x)-\sin (x)}{x \sin (x)}=\frac{0 \cdot \cos (0)-\sin (0)}{0 \cdot \sin (0)}=\frac{0}{0} \quad[\mathrm{H}] \\
& =\lim _{x \rightarrow 0^{+}} \frac{-x \sin (x)+\cos (x)-\cos (x)}{x \cos (x)+\sin (x)}=\lim _{x \rightarrow 0^{+}} \frac{-x \sin (x)}{x \cos (x)+\sin (x)}=\frac{0}{0} \quad[\mathrm{H}] \\
& =\lim _{x \rightarrow 0^{+}} \frac{-x \cos (x)-\sin (x)}{-x \sin (x)+\cos (x)+\cos (x)}=\lim _{x \rightarrow 0^{+}} \frac{-x \cos (x)-\sin (x)}{-x \sin (x)+2 \cos (x)}=\frac{0}{2}=\mathbf{0}
\end{aligned}
$$

Therefore, $\lim _{x \rightarrow 0^{+}} \boldsymbol{\operatorname { c o t }}(x)-\frac{1}{x}=0$

Indeterminate Powers:

Several indeterminate forms arise from the limit $\lim _{x \rightarrow a}[f(x)]^{g(x)}$

1. $\lim _{x \rightarrow a} f(x)=0$ and $\lim _{x \rightarrow a} g(x)=0 \quad$ indeterminate type 0^{0}
2. $\lim _{x \rightarrow a} f(x)=\infty$ and $\lim _{x \rightarrow a} g(x)=0$ indeterminate type ∞^{0}
3. $\lim _{x \rightarrow a} f(x)=1$ and $\lim _{x \rightarrow a} g(x)= \pm \infty$ indeterminate type 1^{∞}

Each of these cases can be solved by one of two ways: 1.) taking the natural logarithm: If $y=[f(x)]^{g(x)}$, then $\ln (\boldsymbol{y})=\boldsymbol{g}(\boldsymbol{x}) \cdot \ln [\boldsymbol{f}(\boldsymbol{x})]$ or by writing the function as an exponential: $[f(x)]^{g(x)}=e^{g(x) \cdot \ln [f(x)]}$

Example: Evaluate $\lim _{x \rightarrow 0^{+}} \boldsymbol{x}^{\boldsymbol{x}}$ This limit has the indeterminate form of type 0^{0}. We can rewrite this as: $x^{x}=e^{x \cdot \ln (x)}$ but $x \cdot \ln (x)$ has the form of $0 \cdot \infty$, however; we can rewrite $x \cdot \ln (x)$ as $\frac{\ln (x)}{\frac{1}{x}}=\frac{-\infty}{-\infty}$. Now that we have that expression in an indeterminate form we can use L'Hospitâl's Rule $[\mathrm{H}]$. (Note that using limit laws we can write: $\lim _{x \rightarrow 0^{+}} e^{x \cdot \ln (x)}=e^{\lim _{x \rightarrow 0^{+}} x \cdot \ln (x)}$. So now we take the limit of the exponent using [H$]$.
$\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{-\frac{1}{x^{2}}}=\lim _{x \rightarrow 0^{+}}(-x)=0 \quad$ So now we have that
$\lim _{x \rightarrow 0^{+}} x^{x}=\lim _{x \rightarrow 0^{+}} e^{x \cdot \ln (x)}=e^{0}=1$

