4.4 Indeterminate Forms and L' Hospitâl's Rule

In this section we will discuss how to take the limit of functions that previously seemed to be impossible to compute.

If we have a limit of the form: $\lim_{x\to a} \frac{f(x)}{g(x)}$ where both $f(x) \to 0$ and $g(x) \to 0$ as $x \to a$, then this limit may or may not exist and is called an **indeterminate form** of type $\frac{0}{0}$.

In addition, if we have a limit of the form: $\lim_{x\to a} \frac{f(x)}{g(x)}$ where both $f(x) \to \pm \infty$ and $g(x) \to \pm \infty$, then the limit may or may not exist and called an **indeterminate form** of type $\frac{\infty}{\infty}$.

To help us with these problems, we introduce L' Hospitâl's Rule (pronounced lo-pe-tall)

L' Hospitâl's Rule: Suppose f and g are differentiable and $g'(x) \neq 0$ on an open interval I that contains a (except possibly at a). Suppose that

$$\lim_{x\to a} f(x) = \mathbf{0}$$
 and $\lim_{x\to a} g(x) = \mathbf{0}$ or

$$\lim_{x \to a} f(x) = \pm \infty$$
 and $\lim_{x \to a} g(x) = \pm \infty$

(In other words we have an indeterminate for of type $\frac{0}{0}$ or $\frac{\infty}{\infty}$) Then,

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

(provided the limit on the right side of the equation exists or is $\pm \infty$.)

- Note 1: L' Hospitâl's Rule says that the limit of a quotient of functions is equal to the limit of the quotient of their derivatives, provided the given conditions are satisfied.
- Note 2: L' Hospitâl's Rule is also valid for one-sided limits and for limits at infinity for negative infinity; that is $x \rightarrow a^+$, $x \rightarrow a^-$, $x \rightarrow \infty$, or $x \rightarrow -\infty$.

Example: Using L' Hospitâl's Rule: Evaluate the following limit.

 $\lim_{x\to 0} \frac{\sqrt{9+3x}-3}{x}$ Substituting **x** =**0** into this function produces the indeterminate form $\frac{0}{0}$. Let $f(x) = \sqrt{9+3x} - 3$ and g(x) = x

then
$$f'(x) = \frac{1}{2}(9 - 3x)^{-\frac{1}{2}} \cdot 3 = \frac{3}{2\sqrt{9-3x}}$$
 and $g'(x) = 1$

Applying L'Hospitâl's Rule, we have: (The notation for applying L'Hospitâl's Rule is [H])

$$\lim_{x \to 0} \frac{\sqrt{9+3x}-3}{x} = \lim_{x \to 0} \frac{\frac{3}{2\sqrt{9-3x}}}{1} = \frac{1}{2}.$$

L'Hospitâl's Rule requires evaluating the $\lim_{x\to a} \frac{f'(x)}{g'(x)}$. It may be that this second limit is another indeterminate form to which **L'Hospitâl's Rule** may be applied again.

Example: Evaluate the following limit:

 $\lim_{x \to 0} \frac{e^x - x - 1}{x^2} \text{ by substitution we get } \frac{e^0 - 0 - 1}{0^2} = \frac{0}{0} \text{ [H]} \to \lim_{x \to 0} \frac{e^x - 1}{2x} \text{ by substitution we get } \frac{e^0 - 1}{2(0)} = \frac{0}{0} \text{ [H]} \to \lim_{x \to 0} \frac{e^x - x - 1}{x^2} = \frac{1}{2}.$

Example: Evaluate the following limit:

$$\lim_{x \to \frac{\pi}{2}^{-}} \frac{1 + \tan x}{\sec x} \text{ by substitution we get } \frac{1 + \infty}{\infty} = \frac{\infty}{\infty} \quad [\text{H}] \to \frac{\sec^2 x}{\sec(x)\tan(x)} (simplify) = \frac{\sec(x)}{\tan(x)} = \frac{\frac{1}{\cos(x)}}{\frac{\sin(x)}{\cos(x)}} = \frac{1}{\sin(x)}$$
$$\lim_{x \to \frac{\pi}{2}^{-}} \frac{1}{\sin(x)} = 1 \quad \therefore \quad \lim_{x \to \frac{\pi}{2}^{-}} \frac{1 + \tan x}{\sec x} = 1$$

Before using **L'Hospitâl's Rule** make sure to check for indeterminate cases. **L'Hospitâl's Rule** will not work unless we get the indeterminate form of $\frac{0}{0}$ or $\frac{\infty}{\infty}$.

Indeterminate Products:

If $\lim_{x\to a} f(x) = 0$ and $\lim_{x\to a} g(x) = \infty$ (or $-\infty$), then it isn't clear what the value of $\lim_{x\to a} [f(x) \cdot g(x)]$, if any, will be. There is a struggle between f and g as to which one's limit will "win" or take over. If f wins then the limit will be 0, if g wins then the limit will be ∞ (or $-\infty$). Or there may be a compromise where the answer is a finite nonzero number. This kind of limit is called an **indeterminate** form of $0 \cdot \infty$. We can deal with it by writing the product as a quotient: $f \cdot g = \frac{f}{\frac{1}{g}}$ or $\frac{g}{\frac{1}{f}}$. This converts the given limit into an indeterminate form of type $\frac{0}{0}$ or $\frac{\infty}{\infty}$ which is necessary to use L'Hospitâl's Rule.

Example: Evaluate $\lim_{x\to\infty} x^2 \sin\left(\frac{1}{4x^2}\right) \lim_{x\to\infty} x^2 \sin\left(\frac{1}{4x^2}\right)$ by substitution we get the indeterminate product form of $\infty \cdot 0$. If we rewrite this by dividing by the reciprocal of x^2 we will get the indeterminate form of $\frac{0}{0}$. $\lim_{x\to\infty} \frac{\sin\left(\frac{1}{4x^2}\right)}{\frac{1}{x^2}} = \frac{0}{0}$ [H] $\rightarrow \lim_{x\to\infty} \frac{\cos\left(\frac{1}{4x^2}\right) \cdot \frac{1}{4}(-2x^{-3})}{-2x^{-3}}$ (simplify) $= \lim_{x\to\infty} \frac{1}{4} \cdot \cos\left(\frac{1}{4x^2}\right) = \frac{1}{4}\lim_{x\to\infty} \cos\left(\frac{1}{4x^2}\right) = \frac{1}{4}\lim_{x\to\infty} \cos\left(\frac{1}{4x^2}\right) = \frac{1}{4}$

Indeterminate Differences:

If $\lim_{x\to a} f(x) = \pm \infty$ and $\lim_{x\to a} g(x) = \pm \infty$, then the limit $\lim_{x\to a} [f(x) - g(x)]$ is in the indeterminate form of type $\infty - \infty$. Again we have to manipulate the problem into a quotient, (by using a common denominator, or rationalizing, or factoring out a common factor, etc...) so that we have the indeterminate form of type $\frac{0}{0}$ or $\frac{\infty}{\infty}$.

Example: Evaluate $\lim_{x\to\infty} x - \sqrt{x^2 - 3x}$ We can see that as **x** approaches infinity, both terms, x and $\sqrt{x^2 - 3x}$ approach infinity. Therefore, this problem has the indeterminate difference form of $\infty - \infty$. Using lots of algebra manipulation we can rewrite. We can factor an x^2 out inside the square root.

$$\lim_{x \to \infty} x - \sqrt{x^2 - 3x} = \lim_{x \to \infty} \left(x - \sqrt{x^2 \left(1 - \frac{3}{x}\right)} \right) = \lim_{x \to \infty} \left(x - x \sqrt{1 - \frac{3}{x}} \right) = \lim_{x \to \infty} x \left(1 - \sqrt{1 - \frac{3}{x}} \right) =$$

 $\lim_{x \to \infty} \left(\frac{1 - \sqrt{1 - \frac{3}{x}}}{\frac{1}{x}} \right) = \frac{0}{0} \quad [H] \to \text{Let } \frac{1}{x} = t \text{ and replace limit as } \mathbf{x} \to \infty \text{ with the limit as } \mathbf{t} \to \mathbf{0}^+$

$$\lim_{t \to 0^+} \frac{(1 - \sqrt{1 - 3t})}{t} \quad [H] \to \lim_{t \to 0^+} \frac{\frac{3}{2\sqrt{1 - 3t}}}{1} = \frac{3}{2} \quad \therefore \quad \lim_{x \to \infty} x - \sqrt{x^2 - 3x} = \frac{3}{2}$$

Example: Evaluate $\lim_{x\to 0^+} \cot(x) - \frac{1}{x}$ As $x \to 0^+$, both $\cot(x)$ and $\frac{1}{x}$ approach ∞ , therefore this problem has the indeterminate form $\infty - \infty$. To rewrite this problem write $\cot(x)$ as $\frac{\cos(x)}{\sin(x)}$

So $\lim_{x\to 0^+} \cot(x) - \frac{1}{x} = \lim_{x\to 0^+} \frac{\cos(x)}{\sin(x)} - \frac{1}{x}$ (find a common denominator ... $x \cdot \sin(x)$)

$$= \lim_{x \to 0^+} \frac{x \cos(x) - \sin(x)}{x \sin(x)} = \frac{0 \cdot \cos(0) - \sin(0)}{0 \cdot \sin(0)} = \frac{0}{0} \quad [H]$$

$$= \lim_{x \to 0^+} \frac{-x\sin(x) + \cos(x) - \cos(x)}{x\cos(x) + \sin(x)} = \lim_{x \to 0^+} \frac{-x\sin(x)}{x\cos(x) + \sin(x)} = \frac{0}{0} \quad [H]$$

 $=\lim_{x\to 0^+} \frac{-x\cos(x) - \sin(x)}{-x\sin(x) + \cos(x) + \cos(x)} = \lim_{x\to 0^+} \frac{-x\cos(x) - \sin(x)}{-x\sin(x) + 2\cos(x)} = \frac{0}{2} = \mathbf{0}$

Therefore, $\lim_{x\to 0^+} \cot(x) - \frac{1}{x} = 0$

Indeterminate Powers:

Several indeterminate forms arise from the limit $\lim_{x\to a} [f(x)]^{g(x)}$

- 1. $\lim_{x\to a} f(x) = 0$ and $\lim_{x\to a} g(x) = 0$ indeterminate type 0^0
- 2. $\lim_{x \to a} f(x) = \infty$ and $\lim_{x \to a} g(x) = 0$ indeterminate type ∞^0
- 3. $\lim_{x \to a} f(x) = 1$ and $\lim_{x \to a} g(x) = \pm \infty$ indeterminate type 1^{∞}

Each of these cases can be solved by one of two ways: 1.) taking the natural logarithm:

If $y = [f(x)]^{g(x)}$, then $\ln(y) = g(x) \cdot \ln[f(x)]$ or by writing the function as an exponential: $[f(x)]^{g(x)} = e^{g(x) \cdot \ln[f(x)]}$ **Example:** Evaluate $\lim_{x\to 0^+} x^x$ This limit has the indeterminate form of type 0^0 . We can rewrite this as:

 $x^{x} = e^{x \cdot \ln(x)}$ but $x \cdot \ln(x)$ has the form of $0 \cdot \infty$, however; we can rewrite $x \cdot \ln(x)$ as $\frac{\ln(x)}{\frac{1}{x}} = \frac{-\infty}{-\infty}$. Now that we have that expression in an indeterminate form we can use L'Hospitâl's Rule [H]. (Note that using limit laws we can write: $\lim_{x\to 0^{+}} e^{x \cdot \ln(x)} = e^{\lim_{x\to 0^{+}} x \cdot \ln(x)}$). So now we take the limit of the exponent using [H].

 $\lim_{x \to 0^+} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = \lim_{x \to 0^+} (-x) = 0$ So now we have that

 $\lim_{x \to 0^+} x^x = \lim_{x \to 0^+} e^{x \cdot \ln(x)} = e^0 = 1$